

Applications

- Network
- Data Storage
- Sensor System
- Instrument

Specifications

Parameter	Min	Typical	Max	Unit
Wavelength	1260		1625	nm
Insertion Loss ${ }^{[1]}$		1.4	1.6	dB
Cross Talk, On/Off	50			dB
Return Loss ${ }^{[3]}$	45		50	dB
Repeatability	0.03		0.1	dB
Polarization Dependent Loss			0.2	dB
Wavelength Dependent Loss ${ }^{[4]}$			0.3	dB
Temperature Dependent Loss			0.3	dB
Switching Time		5	30	ms
Optical Power Handling		300	400	mW
Life Time	10^{9}			cycle
Operating Temperature	-20		70	${ }^{\circ} \mathrm{C}$
Storage Temperature	-40		80	${ }^{\circ} \mathrm{C}$
Operation Humidity			90	\%RH
Storage Humidity			95	\%RH
Power Supply	0		5	VDC
Power Consumption			2	W
Fiber Type		G657A2		
Fiber Connect Type	MU adapter $\times 4$ pcs		MPO adapter x 8 pcs	

Notes:
[1]: measured without connectors @1550nm $\pm 30 \mathrm{~nm}, 23^{\circ} \mathrm{C}$: each connector adds 0.3 dB . 0.6 dB for 1 x 16
[2]: 30dB for multimode fiber, 45 dB for >single mode $24 \mathrm{ch} ., 50 \mathrm{~dB}$ for < single mode 16 ch .
[3]: 30dB for multimode fiber, 50 dB for single mode
[4]: @CWL $\pm 30 \mathrm{~nm}, 23^{\circ} \mathrm{C}$

[^0]
MEMS Quad 1x16 Fiber Optical Switches

1260-1625nm, bidirectional, SM28, 3 year warranty

Optical Path Diagram

Mechanical Dimensions (mm)

DFIE-5S-2.50

MEMS Quad 1x16 Fiber Optical Switches

1260-1625nm, bidirectional, SM28, 3 year warranty

Electrical Driving Pin Definition

Pin	Name	Function	Level
1	VCC	Power Supply	$5.0 \pm 5 \%$ V
2	GND	Ground	0
3	I2C Clock	I/O	LVTTL
4	I2C Data 1	I/O	LVTTL
5	Reset 2	1	LVTTL

I2C

- Bus	$I^{2} \mathrm{C}$ Bus Specifications	Minimum	Typical	Maximum
	$1^{2} \mathrm{C}$ Clock Frequency	10 kHz	100 kHz	100 kHz
	Capacitive Loading			400pF
- Address	- 1 1 1	0	0	R/W

Communication Protocol

- Command

FLAG1	LEN	RES	CMD	DATA	SUM
2 Byte	1 Byte	1 Byte	1 Byte		1 Byte
FLAG1: 0xEFEF LEN: Total number of bytes from RES to SUM RES: 0xFF SUM: Checksum, SUM=FLAG+LEN+RES+CMD+DATA					
FLAG2	LEN	RES	RESP	DATA	SUM
2 Byte	1 Byte	1 Byte	1 Byte		1 Byte

FLAG2: 0xEDFA
LEN: Total number of bytes from RES to SUM
RES: 0xFF
SUM: Checksum, SUM=FLAG+LEN+RES+ RESP+DATA

MEMS Quad 1x16 Fiber Optical Switches

1260-1625nm, bidirectional, SM28, 3 year warranty
Typical Insertion Loss vs Wavelength (1240-1630nm)

1260-1625nm, bidirectional, SM28, 3 year warranty

DATASHEET

Ordering Information

	0416	5	\square	1	0	0	0
Prefix	Configuration	Wavelength	Control	Fiber Type	Fiber Cover	Fiber Length	Connector
MSWJ-		$\begin{aligned} & 1240-1630 \mathrm{~nm}=1 \\ & 1550 \mathrm{~nm}=5 \\ & 1310 \mathrm{~nm}=3 \\ & 1310 / 1550 \mathrm{~nm}=B \\ & 850 \mathrm{~nm}=8 \\ & 850 / 1310=C \\ & 1060 \mathrm{~nm}=6 \end{aligned}$	$\begin{aligned} & \mathrm{TTL}=1 \\ & \mathrm{USB}=2 \\ & \mathrm{RS} 232=3 \\ & \text { Special }=0 \end{aligned}$	$\begin{aligned} & \text { SM28 = } 1 \\ & 50 / 125=2 \\ & \text { Hi1060 = } 3 \\ & \text { PM1550 = } 5 \\ & \text { Special }=0 \end{aligned}$	Bare fiber = 1 900um tube $=3$ Special =0	$\begin{aligned} & 0.25 m=1 \\ & 0.5 m=2 \\ & 1.0 m=3 \\ & \text { Special }=0 \end{aligned}$	$\begin{aligned} & \text { None }=1 \\ & \text { FC/PC }=2 \\ & \text { FC/APC }=3 \\ & \text { SC/PC }=4 \\ & \text { SC/APC }=5 \\ & \text { SC/UPC }=S \\ & \text { ST/PC }=6 \\ & \text { LC/PC }=7 \\ & \text { MTP }=9 \\ & \text { LC/UPC }=U \\ & \text { Special }=0 \end{aligned}$

Fiber Core Alignment

Note that the minimum attenuation for these devices depends on excellent core-to-core alignment when the connectors are mated. This is crucial for shorter wavelengths with smaller fiber core diameters that can increase the loss of many decibels above the specification if they are not perfectly aligned. Different vendors' connectors may not mate well with each other, especially for angled APC.

Fiber Cleanliness

Fibers with smaller core diameters $(<5 \mu \mathrm{~m})$ must be kept extremely clean, contamination at fiber-fiber interfaces, combined with the high optical power density, can lead to significant optical damage. This type of damage usually requires re-polishing or replacement of the connector.

Maximum Optical Input Power

Due to their small fiber core diameters for short wavelength and high photon energies, the damage thresholds for device is substantially reduced than the common 1550 nm fiber. To avoid damage to the exposed fiber end faces and internal components, the optical input power should never exceed 20 mW for wavelengths shorter 650 nm . We produce a special version to increase the how handling by expanding the core side at the fiber ends.

MEMS Quad 1x16 Fiber Optical Switches

1260-1625nm, bidirectional, SM28, 3 year warranty

```
DATASHEET
```


USB Control/ GUI

We provide an adapting PCB for USB (Virtual COM) control with a user-friendly GUI Windows ${ }^{T h}$ program supporting UART commands. It is intended for convenient laboratory use or switch performance evaluation. The unit has a mini USB connector with a USB-to-MicroUSB cable. It can be powered by an accompanied 5 V wall pluggable power supply.

- Create and edit testing time sequence

Add step: Click the "Add Step" button in the menu strip or click the "+(ADD)" button would both add a step to the Programmable Running Sheet.
Delete step: Click the "Delete Step" button in the menu strip or click the "-(DEL)" button would both delete a step in the Programmable Running Sheet.

Edit step: There are two things that you can modify for one step. One is the light path, and the other is the duration for each step. Double click the cell that you want to modify, and the program will allow you to modify the setting.

MEMS Quad 1x16 Fiber Optical Switches

1260-1625nm, bidirectional, SM28, 3 year warranty

Get Channel for switch x						
Command	FLAG1	LEN	RES	CMD	DATA	SUM
	OxEFEF	0x04	0xFF	OxOE	1 byte	SUM
DATA $=$ switch index, from 1 to 4						
Response	FLAG2	LEN	RES	RESP	DATA	SUM
	OxEDFA	0x05	OxFF	OxOE	2 bytes	SUM
	DATA $=$ Channel $=($ Byte_1<<8) + Byte_2					

Read Module Information						
	0xEFEF	0×03	$0 \times F F$	0×01		SUM
Response	FLAG2	LEN	RES	RESP	DATA	SUM
	$0 \times E D F A$	0×27	$0 \times F F$	0×01	36 bytes	SUM

Item	Bytes	Type	
Vendor Code	10	ASCII	
Reserved	10	ASCII	Information about the channel and the type
Hardware Version	2	Hex	X.Y (X—byteO Y-byte1)
Firmware Version	2	Hex	X.Y (X—byteO Y-byte1)
Production Date	4	Hex	YYYY-MM-DD YYYY-byteO byte1 MM—byte2 DD-byte3
Serial Number	8	ASCII	

Reset Module					
Command	FLAG1	RES	CMD	DATA	SUM
	OxEFEF	OxFF	0×03		SUM
Response	FLAG2	RES	RESP	DATA	SUM
	OxEDFA	OxFF	0×03		SUM

[^0]: Legal notices: All product information is believed to be accurate and is subject to change without notice. Information contained herein shall legally bind Agiltron only if it is
 liability whatsoever in connection with the use of a product or its application.
 Rev 02/20/24

